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SUMMARY 

The problem of identifying the lowest dose level for which the mean response differs from that at the 
zero dose level is considered. A general framework for stepwise testing procedures that use contrasts 
among the dose level means is proposed. Using this framework, several new procedures are derived. 
These and some existing procedures, including that of Williams (1971, Biometrics 27, 103-117; 
1972, Biometrics 28, 519-531), are compared analytically and by an extensive simulation study for 
the normal theory balanced one-way layout case. It is pointed out that the procedures based on 
the so-called step and basin contrasts proposed by Ruberg (1989, Journal of American Statistical 
Association 84, 816-822) have excessively high type I familywise error rates (FWEs) and, hence, 
they should not be used. Some findings of the simulation study are as follows: For monotone dose 
mean configurations, Williams' procedure and two step-down test procedures based on Helmert 
and linear contrasts offer the best performance. For nonmonotone dose mean configurations, the 
performance of Williams' procedure does degrade somewhat, but the other two procedures are still 
the best. For more complex designs, a simple step-down test procedure that uses any a-level tests 
(not necessarily t-tests) to compare each dose level with the zero dose level controls the FWE 
and is the only alternative available, but its power is rather low, especially under nonmonotone 
configurations. Step-up procedures are generally dominated by step-down procedures when the 
same contrasts are used although the differences are not great. 

1. Introduction 
A common problem in toxicological and drug development studies is to assess the biological activity 
of a chemical compound. For this purpose, a dose-response experiment is conducted in which several 
doses of the compound are administered to separate groups of experimental units. It is customary 
to include a zero dose to serve as a placebo control. There are two primary goals in these studies. 
In a toxicological study the goal is to estimate a safe dose that will not cause some undesirable 
effect (e.g., toxicity, carcinogenicity), whereas in a drug development study the goal is to estimate 
the lowest dose that will cause some desirable effect. 

In toxicological studies, the conventional approach is to find the highest dose for which the 
response does not differ significantly from that at the zero dose (called the no observed adverse 
event level [NOAEL] dose; see Ryan, 1992) and apply an appropriate safety factor to it to arrive at 
a safe dose level. This approach has the drawback that smaller and less sensitive experiments result 
in higher safe doses, which is the opposite of what is desired. To correct this drawback, Gaylor 
(1983) and Crump (1984) have proposed an alternative approach in which a dose-response curve is 
fitted to the data and the dose level corresponding to a specified risk level is estimated (e.g., EDOI, 
which causes a 1% increase in risk over the control level). To account for the uncertainty in this 
estimate, the safety factor used to arrive at the safe dose level is based on the upper confidence 
limit on the risk level at the estimated ED1. 

Key words: Dose-response function; Familywise error rate; Monte Carlo simulations; Multiple 
comparison procedures; Multivariate t-distribution; Stepwise testing procedures. 
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In drug development studies, this regression approach is not commonly used nor is it generally 
needed because no extrapolation from the experimental data is involved. Instead, a testing approach 
is employed to identify the lowest dose with an effect that exceeds that of the control. This is known 
as the dose-finding problem. In the present paper, we address this latter problem. 

We assume that the responses are normally distributed and that the only possible effect of the 
dose level is a shift in the mean. The specific goal of the dose-response study is to find the smallest 
dose for which the mean is shifted from the zero dose mean; Ruberg (1989) referred to this dose 
as the minimum effective dose (MED). However, what any test procedure finds is a minimum 
detectable dose (MDD), which is one level higher than the NOAEL. 

Williams (1971, 1972) proposed one of the first dose-finding procedures. Ruberg (1989) proposed 
some procedures based on selected contrasts of the sample means at different doses. Rom, Costello, 
and Connell (1994) derived closed testing procedures that allow comparisons between successive 
sets of doses in addition to comparisons with the zero dose (see also Budde and Bauer, 1989). In 
this paper, we review these procedures in a general unifying framework and propose some new 
ones. We then compare the various procedures by Monte Carlo simulation. 

The outline of the paper is as follows. Section 2 gives notation and assumptions. Section 3 
presents the various procedures in a general framework. Section 4 gives a numerical example to 
illustrate the procedures. Section 5 discusses the results of the simulation study. Finally, Section 6 
gives conclusions and recommendations. 

2. Preliminaries 
2.1 Notation and Assumptions 
Denote a set of increasing dose levels by 0, 1, 2, .. . , k, where 0 corresponds to the zero dose level 
(placebo control). Consider a one-way layout setting in which ni experimental units are tested at 
the ith dose level, i = 0,1, ... ., k. We assume that all observations Yij are mutually independent 
with yij ,v N(,vi, o-2), i = O, 1, .I. k and j = 1, 2, . . ., ni. 

Let Yi - N(,i, o-2/ni), i 0,1, , k, be the sample means, and let s2 be an unbiased 
estimate of the common variance u2 based on v degrees of freedom (df) and distributed as I/ 
independently of the Yi. Usually, S2 is the mean square error estimate from the analysis of variance 
with v = k ni - (k + 1) df. Henceforth, we restrict to the case n = n2 nk = n; that 
is, an equal number, n, of experimental units is tested at each of the nonzero dose levels. For some 
procedures, we put an additional restriction that no = n; the numerical example and the simulation 
study are confined to this case. These restrictions on the sample sizes are imposed primarily for the 
sake of convenience. In the final section, we indicate how some of the procedures can be extended 
to the unequal sample size case. 

The MED is defined as 

MED = min{i vi > bo}. 

Note that the MED is defined in mathematical terms not in terms of biologically meaningful 
effectiveness. If a threshold value A\ > 0 can be specified for the latter, then all of the procedures 
can be readily modified by defining the MED as min{i: vi > ,uo + i\}. Thus, without loss of 
generality, we can take \ = 0. 

The problem of identifying the MED is formulated as a sequence of hypothesis testing problems: 

Hoi : /o = a = =,vi versus Hi : Ho =, = =i-1 < /li (1 < i < k). (2.1) 

If i* is the smallest i for which Hoi is rejected, then the i*th dose is identified to be the MED, that 
is, MED = i*. 

REMARK. As already mentioned, the MED found by using this hypothesis testing approach is 
simply the lowest dose that differs significantly from the zero dose. In this sense, the hypothesis 
testing procedures do not really identify or estimate the MED; rather, they find the so-called MDD. 

Note that we are not assuming that the ,ui are monotonically ordered: 

,Uo < ,U1 < *-- < 11wk- ~~~~(2.2) 

In particular, it is possible under H1i that [tj <[to for some j > i. However, for practical reasons, 
it seems prudent to require that [tj > i-t for all j > i. Only Williams' procedure discussed in ? 3.1 
makes monotonicity assumption (2.2). 
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Since this is a multiple hypothesis testing problem, it is logical to require control of the familywise 
error rate (FWE), which is defined as 

FWE = P{at least one true Hoi is rejected}. 

We restrict to multiple test procedures that strongly control (Hochberg and Tamhane, 1987, 
Chapter 2) FWE < a for designated a. Why is strong control of the FWE needed? To see the 
inappropriateness of weak control of the FWE only under the global null hypothesis Hok O = 

Al = ... = Ak, consider two experiments, one with k = 4 dose levels and the other with k = 5 
dose levels, and suppose that the true MED = 5. Then, estimating dose 4 to be the MED would 
be regarded as a type I error in the first experiment (where the global null hypothesis is true) but 
not in the second experiment (where the global null hypothesis is false). It is precisely because the 
true MED can be any one of the dose levels that control of the FWE is needed, and it should be 
strong control. If the cost of a type I error is to be balanced against the cost of a type II error, 
then it is the a that should be changed, not the type of error rate control. 

2.2 Closed Procedures 
A general method for constructing a procedure that controls the FWE strongly for any family of 
hypotheses was given by Marcus, Peritz, and Gabriel (1976). The method consists of first forming 
a closure of the family of hypotheses by including in it all intersections of the original hypotheses. 
A hypothesis in the closure is rejected at level a iff all hypotheses implying it, including itself, are 
significant at level a. 

The family of hypotheses {Hoi, 1 < i < k} is already a closed family because for any set of 
indices <il <i2 < ... <im <k, 

Hoi, n Hoi2 n ... n HOi = H0i 

As a result, it is particularly easy to construct closed procedures. All that is needed are separate 
a-level tests of the individual Hoi, which must be applied in a step-down manner. A hypothesis Hoi 
is tested and rejected at level a iff all the hypotheses Hoj are significant at level a for j > i. The 
step-down procedures discussed in ? 3.2.2 are of closed type and, hence, control the FWE strongly. 

3. Description of Procedures 
We first describe Williams' (1971, 1972) step-down procedure, which is based on the monotonicity 
assumption 2.2. Next we describe a class of procedures that do not make this assumption. 

3.1 Williams' Procedure 
Williams' (1971, 1972) procedure (WILM) does not use the -i's as the estimates of the ,ui's; instead, 
it uses the isotonic (maximum likelihood) estimates 

V 

E Yi 
max min i=U (I<i<k) 1<u<i i<v<k (v - u + 1) 

based on order restriction (2.2). The Aij are conveniently calculated by using the "pool the adjacent 
violators" algorithm. Next, pairwise t-type statistics: 

ti= Hi-SYo (1 < i < k) (3.1) 
s 1//no + lr/n 

are calculated. Hypotheses (2.1) are tested in a step-down manner by comparing these statistics 
with their corresponding critical points ci = t{i) as follows: Begin by testing Hok. Reject Hok if 

tk > t and proceed to testing Hok1; otherwise, stop by accepting all Hoi. In general, test and 

reject Hoi iff Hoj for j > i are rejected and ti > ii< otherwise, stop by accepting Ho1,... , Hoi. 
Estimate the MED as MED = i* if i* is the smallest index i for which Hoi is rejected. In other 
words, 

If there is no such i*, that is, if tk < {?) then declare no dose level as the MED (or conclude that 

the MED is higher than dose level k). 
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For the special case no = n, Williams (1971) tabulated the upper a critical points, ta,, of the 
distribution of ti under Hoi for selected values of a, i and v. An empirical formula to extend these 
to the case no 74 n is given in Williams (1972). 

REMARK. There is an inconsistency in the way this procedure is stated in Williams' two papers. In 
his first paper (1971), the zero dose mean, yo, is included in the calculation of the isotonic estimates 
both in the description of the procedure and in the numerical example. However, when deriving 
the joint distribution of the ti for the purpose of determining the critical points t(<) it is assumed 
that -o is not included. On the other hand, in his second paper (1972), yo is excluded from the 
isotonic estimates calculation throughout. Actually, both ways of calculating the isotonic estimates 
lead to identical estimates i* of the MED as well as identical t-tests for testing it. Hence, it does 
not matter which way they are calculated. 

Also, Williams (1971) proposed an alternative test statistic that uses the isotonic estimate ito 
of [uo in place of yo in (3.1). Marcus (1976) studied the performance of this modified Williams 
procedure. 

3.2 A Class of Stepwise Procedures Based on Contrasts among the Sample Means 
These procedures can be classified according to the type of contrast and the type of testing scheme. 

3.2.1 Type of contrast. For testing a hypothesis Hoi, a contrast of the following general form is 
used: 

aioyo + ail Y1 + + aikYk, 

where Ej=o a-j 0. The corresponding t-statistic is given by 

k 

S aijQj 

ti = j=O (1 < i < k). (3.2) 
k 

s a 0/no + E atj/n 
j=1 

The critical points of the procedure depend on the joint distribution of the ti. This is a multivariate 
t-distribution with v df and correlation matrix {Pij }, where Pij is the correlation coefficient between 
the ith and the jth contrasts (1 < i #4 j < k). 

Four different contrasts are considered: 

1) Pairwise (P) Contrasts: The ith pairwise contrast is simply Yi - -o (1 < i < k). In this case, 
(3.2) simplifies to 

ti = Yi-YO (I < i < k). (3.3) 
s >,/l/no + I/n 

The correlation coefficients are given by Pij = n/(no +rn), which equal 1/2 for the special case 
no = n. 

2) Helmert (H) Contrasts (Ruberg, 1989). The ith Helmert contrast is defined by 

{-1 j=0,1,...,i-1,( 
aij = i, j =i, (3.4) 

tO, ji +l,...,Ik. 

Effectively, the ith contrast compares the ith dose level mean with the average of all the lower 
dose level means (including the zero dose level). These contrasts are mutually orthogonal. 
Therefore Pij = 0 when no = n. 

3) Reverse Helmert (R) Contrasts. These are the reverse of Helmert contrasts in the sense that 
the ith contrast compares the average of the means of the first i dose levels with the zero dose 
mean. Thus, the contrast coefficients are given by 

[-i, j=0, 
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These contrasts are not orthogonal. For no = n, the correlation coefficients between these 
contrasts are unequal and are given by 

Pij/= 1) (1 <i<j<k). 

4) Linear (L) Contrasts. These contrasts were proposed by Rom et al. (1994); the corresponding 
t-tests are equivalent to the tests for trend using ordinal scaling proposed by Tukey, Ciminera, 
and Heyse (1985). The general form of these contrasts is given by 

(-i, j=O, 
aij = ai,j l +2, 1,. .. ,i, (3.6) 

01, ji + 1,...,Ik. 
The correlations among these contrasts cannot be expressed in a simple form. 

Ruberg (1989) proposed two other contrasts that he called step and basin contrasts. 
Unfortunately, the procedures based on both these contrasts do not control the type I FWE except 
under the overall null hypothesis. Ruberg (1989) noted this fact based on his simulation results, 
but he did not offer a theoretical explanation, nor did he advise against their use. We now offer a 
theoretical explanation for the excessive type I error rates. 

The coefficients for step contrasts are given by 

aij -(k-i+l1), j =0 O...,Ii-1, 
tt) j=il... Ik. 

Thus, the ith step contrast compares the average of the means of the highest k - i + 1 dose levels 
with the average of all the lower dose levels (including the zero dose level). 

The coefficients for basin contrasts are given by 

_ -(k -i + 1)(k -i + 2)/2, j = O, ... ., i -1, 
l3 ai,j-l + k + 1, j = i, ... ., k. 

The ith basin contrast is intended to compare the average of the means of the zero dose level and 
the first i - 1 dose levels with the weighted average of the means of the k - i + 1 highest dose levels 
(1 < i < k) where the weights increase linearly with the dose level. However, the preceding basin 
contrasts defined by Ruberg (1989) do not achieve this intended objective because some of the 
aij for j > i are also negative. For example, see Table 1, where alo, all, and a12 are all negative 
for basin contrast 1; thus, that contrast compares doses 0, 1, and 2 with higher doses instead of 
comparing the zero dose with all the nonzero doses. To remove this anomaly, we could revise the 
definition of the basin contrasts as follows: 

a- |-(k-i+l1)(k-i+2)/2, j =0 O...,Ii-1, 
13 li(j- i+ 1), j= i,...,Ik. 

Table 1 gives the values of the step, basin, and revised basin contrasts for k = 5. 
A common feature of the step and basin contrasts (including the revised basin contrasts, defined 

earlier) is that the ith contrast puts positive weights on some dose levels j > i. Therefore, it has a 
positive mean under Hoi if vj > vo for j > i, which results in the corresponding ti-statistic having 
a noncentral rather than a central t-distribution. Hence, the tests based on these contrasts tend to 
reject too often and do not control the FWE. 

Table 1 
Step and basin contrasts for k = 5 

No. Step contrast Basin contrast Revised casin contrast 

1 (-5,1,1, 1, 1, 1) (-15, -9, -3, 3,9,15) (-15,1, 2, 3,4, 5) 
2 (-4, -4, 2, 2, 2,2) (-10, -10, -4, 2, 8,14) (-5, -5, 1, 2,3,4) 
3 (-3, -3, -3, 3, 3, 3) (-6, -6, -6, 0, 6, 12) (-2, -2, -2, 1, 2, 3) 
4 (-2, -2, -2, -2, 4, 4) (-3, -3, -3, -3, 3, 9) (-3, -3, -3, -3, 4, 8) 
5 (-1, -1, -1, -1, -1, 5) (-1, -1, -1, -1, -1, 5) (-1, -1, -1, -1, -1, 5) 
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Ruberg's (1989) simulations were made for k = 4 and a = .05. He found that the FWE of his 
basin contrasts procedure ranged between 15 and 20% for the five partial null configurations that 
he considered. The FWE of his step contrasts procedure was about 9% for two configurations with 
MED = 4 and /14 = .5, 1.0, and less than 5% for the other three configurations with MED < 4 and 
u4 = 1.5, 2.0; here, ,uo = 0 and o/\/n 1/= 1. Why does the step contrasts procedure control 
the FWE under the latter three configurations but not under the former two? Both procedures are 
single-step and they identify the MED with the contrast producing the tmax statistic if the latter is 
significant. Therefore, under the latter three configurations where [tmax = /4 is large, the procedure 
identifies either dose level 3 or 4 as the MED with high probability thus resulting in very few type 
I errors. In a sense, the procedure is too conservative in these cases because (i) it only considers 
the maximum t-statistic when actually the goal is to identify the minimum effective dose and, more 
importantly, (ii) it operates in a single-step manner. If it were a step-down procedure then it would 
have the opportunity to test the lower doses, thus making the procedure less conservative; see the 
discussion of the simulation results in Section 5.2. 

3.2.2 Type of testing scheme. The hypotheses Hoi can be tested using the statistics ti in a single- 
step or stepwise manner (Hochberg and Tamhane, 1987). However, because we are only interested 
in tests here and not in confidence interval estimation, stepwise procedures offer a more powerful 
alternative. Stepwise procedures are of two types: (i) step-down and (ii) step-up. For each set of 
contrasts, we consider two step-down and two step-up procedures as described here. 

Step-Down Procedure 1 (SD1). The closed step-down (SD) procedure proposed by various authors 
(Miller, 1966; Naik, 1975; and Marcus et al., 1976) for comparing unordered treatments with 
a control can be applied to the present problem as follows. First, consider P and H contrasts, 
which have equally correlated t-statistics with common correlation p (p = 1/2 for P contrasts 
and p = 0 for H contrasts when no = n). Compute the t-statistics using (3.2) and order them: 
t(l) < t(2) < < t(k). Let Ho(,), Ho(2), *Ho(k) be the corresponding null hypotheses. At the 

first step, let kl k be the number of hypotheses still to be tested. Compare t(k,) with ck1 tki)p) 
the upper a equicoordinate critical point of the equicorrelated kl-variate t-distribution with v df 
and common correlation p. If t(ki) ? t( e), p, then reject Ho(kl) and all hypotheses whose rejection 
is implied by it1 (i.e., if Ho(kl) = Hom, then reject Hoj for j = m,m + 1,. .., kl) and go to 
the second step with k2 m - 1, the number of hypotheses still to be tested; otherwise, stop 
testing and accept all hypotheses. In general, at the ith step let ki be the number of hypotheses 
still to be tested. Relabel the ordered statistics t(i) < t(2) ... <_ t(ki) and the corresponding 
hypotheses as Ho( i), Ho(2),.. , HO(ki). Test Ho(ki) by comparing t(ki) with Ck 

k = R 

Ho(ki) if t(ki) > t(?e) and all hypotheses whose rejection is implied by it and go to the next 
step; otherwise, stop testing. When testing stops, estimate the MED as the minimum index of the 
rejected hypotheses. 

For R and L contrasts, we can use the extension of SD1 to unequally correlated t-statistics by 
Dunnett and Tamhane (1991). Note that in this extension the critical point needs to be recomputed 
at each step because of the changing correlation matrix {Pij}. In the present work, we used 
Schervish's (1984) algorithm to calculate these critical points exactly. The four SD1 procedures 
for PI H, R, and L contrasts will be denoted by SD1P, SD1H, SD1R, and SD1L, respectively. It 
may be noted that SD1P is the stepwise analog of the single-step test procedure of Dunnett (1955). 

REMARK. SD1L was proposed earlier by Rom et al. (1994, Section 2.3), who further extended it to 
the closed family formed by the intersection of all hypotheses of the equality of subsets of successive 
,vi's. Although these authors used a procedure that did not include the Shaffer-type modification, it 
is easy to see that their procedure is equivalent to SD1L for the purpose of determining the MED. 

Step-Down Procedure 2 (SD2): As noted earlier, the family of hypotheses under test is a closed 
family. Using this fact, a simpler closed step-down procedure that controls the FWE and does not 
require ordering of the t-statistics is as follows: reject Hoi iff each Hoj is significant for all j > i 

using an ordinary a-level t-test, that is, tj > c = t(_) where t(ce) is the upper a critical point of 
Student's t-distribution with v df. 

SD2 has the advantage of being simple and flexible. Because the critical point from Student's t 
does not depend on the correlations among the contrasts, SD2 can be used with complex unbalanced 

1This modification where certain hypotheses are rejected without actually testing them is similar 
to Shaffer's (1986) modification of step-down testing procedures for pairwise comparisons. 
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designs (e.g., unbalanced multiway designs with covariates) involving unequal correlations among 
the contrasts. In fact, all that is needed is any a-level test to compare each dose with the zero 
dose; this test need not be a t-test but could be, for example, a nonparametric test. Note that the 
Shaffer-type modification is not needed here because we test the hypotheses in the order of dose 
levels. The four SD2 procedures for P, H, R, and L contrasts will be denoted by SD2P, SD2H, 
SD2R, and SD2L, respectively. 

REMARK. SD2L was used in an example by Tukey et al. (1985). It was presented formally by 
Rom et al. (1994, Section 2.1), who extended it to the same closed family of hypotheses as in their 
extension of SD1L. 

Step- Up Procedure 1 (SUI): The step-up (SU) procedure proposed by Dunnett and Tamhane 
(1992) for comparing unordered treatments with a control can be applied to the present problem 
as follows. First, consider P and H contrasts, which have equally correlated t-statistics with 
common correlation p (p = 1/2 for P contrasts and p = 0 for H contrasts when no n n). 
Let cl < c2 < ... < ck be the critical constants for SU for given k, v, a, and p; these 
constants are tabulated in Dunnett and Tamhane (1992). The procedure uses ordered t-statistics, 
t(l) < t(2) < ... < t(k), and operates as follows: Test Ho(,) by comparing t(i) with cl. If 
t(i) > cl, reject all hypotheses and stop testing; otherwise, proceed to test Ho(2). In general, 
test the hypothesis Ho(i) iff t(j) < cj for j = 1,... , i - 1. If t(i) < ci, then proceed to test Ho(i+l,); 
otherwise, stop testing and reject the hypotheses Ho(i), Ho(i+l),. . , O(k) and any hypotheses 
whose rejection is implied by them (which were accepted at earlier steps). In effect, estimate the 
MED as MED = i* = min{(i), . . . , (k)}. This procedure controls the FWE strongly because the 
Dunnett and Tamhane procedure does as shown in their paper. 

The extension of this procedure to unequally correlated t-statistics given in Dunnett and 
Tamhane (1995) can be used for R and L contrasts. This requires recomputing of the critical 
point at each step because of the changing correlation matrix {Pij }. 

Note that the implied hypotheses are rejected here only at the last step. This has no effect on 
the power because the critical constants used for testing are not changed. On the other hand, the 
power of SD1 is enhanced because of this Shaffer-type modification because it uses smaller critical 
constants appropriate for the reduced number of hypotheses remaining to be tested at each step. 
For this and other reasons, we found in our simulations that for a given contrast type (P, H, R, or 
L) SD1 generally dominates SUI although the difference in their powers is never substantial. To 
demonstrate this point, we shall use the SUIP procedure, which is directly comparable with SD1P. 
The results for other SUI procedures are not reported to save space. 
Step-Up Procedure 2 (SU2). Analogous to SD2 we can construct a step-up procedure based on 
unordered t-statistics and a common critical constant c. This procedure would operate as follows: 
Begin by testing Ho1. If ti > c, then stop testing and reject all hypotheses; otherwise, proceed to 
test H02. In general, test Hoi iff tj < c for j =1, ... , i - 1. If ti > c, then stop testing and reject 
Hoi,i.. , HOk; otherwise, go to the next step. If no hypotheses are rejected, then no dose is declared 
as the MED; otherwise, the MED is estimated as 

MED = i* = min{i : ti > c}. 

Thus, any SU2 procedure can be viewed as a single-step procedure: Declare the lowest dose that 
yields ti > c as the MED. 

Next, we show how to determine c so that the FWE is strongly controlled at a designated level 
a. For the sake of simplicity, we restrict to the equicorrelated case (P and H contrasts). Consider 
any true hypothesis Hoi. Then, 

FWE= P{Reject Hoi} 
=1- P{t < c,... ,ti < C} 

Here, t1,..., ti have an i-variate t-distribution with v df and common correlation p. The FWE is 
clearly maximum under Hok. Therefore, the equation for determining c is 

P{l c .. , k c =1-ae, 

the solution to which is c = kt .Ruberg (1989) proposed SU2H for which c = -kt =m?) 

the upper ae critical point of the Studentized maximum distribution (referred to incorrectly as the 
maximum modulus distribution in Ruberg's paper) of dimension k and df v-. 
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Now note that SD1 uses the same critical constant Ck t at the first step and smaller critical 
(ct)~~~~~~~~~k 

constants ci = ti,,,p at subsequent steps. It is clear that, for a given set of contrasts, SD1 uniformly 
dominates SU2 (because essentially, as already noted, SU2 is a single-step procedure based on the 
same critical constant as is SD1) in the sense that its estimated MED is never higher than that of 
SU2. 

We investigated a modification of SU2 that uses a sequence of critical constants, cl < c2 < ...< 

Ck, instead of a common critical constant c. However, for the cases studied in simulations, this 
modified procedure offered little improvement. Therefore, we eliminated SU2 in both of its forms 
from consideration. 

4. Example 
In a dose response study, five dose levels are compared to the zero dose level in a balanced one-way 
layout (no = n). Suppose that the sample means are: 

YO Yl Y2 Y3 Y4 Y5 

.0 1.5 2.1 1.9 2.3 2.1 
Assume that standard deviation (Yi - Yo) = 2/n= 1.0 and df = oc. Find the MED subject to 
the condition that the FWE is controlled at a' .05. 

Procedure WILM. The first step is to calculate the Aij, which are as follows: 
Ai A A3 A4 A 

1.5 2.0 2.0 2.2 2.2 
The next step is to compute the t-statistics, which are the same as the Aij because -o 0 and 
oV2/n 1.0. Hence, 

tj = 1.5, t2 = 2.0, t3 = 2.0, t4 = 2.2, t5 = 2.2. 

The t-statistics are compared with the following critical constants (taken from Williams, 1971, 
Table 1) in a step-down manner: 

Cl = 1.645, C2 = 1.716, C3 = 1.739, C4 = 1.750, C5 = 1.756. 

It is easily checked that MED = 2. 
Procedure SD1P. The ti are the same as the Yi because go = 0 and oV2/n 1.0. The ordered 

ti are 

t(l) = ti = 1.5, t(2) = t3 = 1.9, t(3) = t2 = 2.1, t(4) = ts = 2.1, t(5) = t4 = 2.3. 

The critical constants ci =( t0(5) for i = 1, 2,... ,5 taken from Bechhofer and Dunnett (1988) 
are 

cl = 1.645, c2 1.916, C3 = 2.062, C4 = 2.160, C5 = 2.234. 

At the first step, because t(5) = t4 2.3 > C5 = 2.234, we reject H04 and by implication also H05; 
thus, k2 = 3. At the second step, because t(3) = t2 = 2.1 > C3 = 2.062, we reject H02 and by 
implication also Ho3; thus, k3 = 1. At the third step, because t(i) = ti = 1.5 < cl = 1.645, we 

accept Ho1. Hence, MED = 2. 
Procedure SD2P. The unordered ti = Yi are compared with a common critical constant 

(,05) c = too = 1.645 in a step-down manner. It is easily checked that MED = 2. 
Procedure SUIP. The ordered t-statistics given earlier under procedure SD1P are compared with 

the critical constants ci for i = 1, 2,... , 5 in a step-up manner. These critical constants for a = .05, 
v= oo, and p= 1/2 taken from Dunnett and Tamhane (1992) are as follows: 

Cl = 1.645, c2 = 1.933, C3 = 2.071, C4 = 2.165, C5 = 2.237. 

Beginning with t(i) =1.5, the first significant t-statistic is t(3) = 2=2.1 > C3 =2.071. Testing is 
stopped at this point with the rejection of H02 and the remaining hypotheses, H05 and H04. Then, 
MED =min{2, 5, 4} =2. Note that H03 is rejected by implication, although it was accepted at the 
second step. Note also that this has no real effect, because the MED would have been estimated to 
be 2 anyhow. 
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Procedure SD1H. The standard deviation of the ith Helmert contrast (for a common sample size 
n) is given by 

a + + 07 ~~- + -cT - ____ _ 

d n + n n n n n 2 2 

Table 2 shows the calculation of the t-statistics. 

Table 2 
Calculation of the Helmert contrasts and their t-statistics 

No. Contrast vector Contrast value SD t-statistic 
1 (-1,1,0,0,0,0) 1.5 1 1.500 
2 (-1,-1,2,0,0,0) 2.7 X 1.559 
3 (-1- -11,3,0,0) 2.1 V .857 
4 (-1, -1, -1, -1,4,0) 3.7 10 1.170 
5 (-1, -1, -1, -1, -1,5) 2.7 15 .697 

The ordered t-statistics, 

t(i) = t5 = 0.697, t(2) = t3 = 0.857, t(3) t4 = 1.170, t(4) t1 1.500, t(5) t2 = 1.559, 

are compared with the critical constants, ci = t(a) = m(a) where m(a) is the 100(1 - a) 
percentage point of the Studentized maximum distribution. These constants (taken from Bechhofer 
and Dunnett [1988]) are as follows: 

cl = 1.645, C2 1.954, C3= 2.121, C4= 2.234, C5= 2.319. 

Because t(5) = t2= 1.559 < 2.319, we stop at the first step and accept all Hoi. Thus, no dose is 
declared as the MED. 

Procedure SD2H. We begin by comparing t5= .697 with t_(05) - 1.645. Because 0.697 < 1.645, 
testing stops at the first step, and no dose is declared as the MED. 

Procedure SD1R. The standard deviation for the ith contrast (for a common sample size n) is 
the same as that for the Helmert contrast, viz., i/(i+ 1)/2. Table 3 shows the calculation of the 
t-statistics. 

Table 3 
Calculation of the reverse Helmert contrasts and their t-statistics 

No. Contrast vector Contrast value SD t-statistic 
1 (-1,1,0,0,0,0) 1.5 1 1.500 
2 (-2,1,1,0,0,0) 3.6 V 2.078 
3 (-3,1,1,1,0,0) 5.5 V 2.245 
4 (-4,1,1,1,1,0) 7.8 10 2.467 
5 (-5,1,1,1,1,1) 9.9 VY- 2.556 

The ordered t-statistics, 

t(i) = ti = 1.500, t(2) = t2= 2.078, t(3) = t3= 2.245, t(4) = t4= 2.467, t(5) t5= 2.556, 

are compared with the following critical constants in a step-down manner: 

cl = 1.645, c2= 1.817, C3= 1.890, C4= 1.931, C5= 1.957. 

It is easily checked that MED =2. 
Procedulre SD2R. The unordered t-statistics are tested against t( 05) - 1.645 in a step-down 

manner beginning with ts. It is easily checked that MED - 2. 
Procedulre SD1L. Table 4 shows the calculation of the t-statistics. 
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The ordered t-statistics are: 

t(i) = t1 = 1.500, t(2) = t3 = 1.992, t(3) = t2 = 2.100, t(4) = t5 = 2.147, t(5) t4 = 2.236, 

which are compared with the following critical constants in a step-down manner: 

cl 1.645, C2 1.916, C3= 2.060, C4= 2.155, C5= 2.224. 

Table 4 
Calculation of the linear contrasts and their t-statistics 

No. Contrast vector Contrast value SD t-statistic 

1 (-1,1,0,0,0,0) 1.5 1 1.500 
2 (-1,0,1,0,0,0) 2.1 1 2.100 
3 (-3-1,1,3,0,0) 6.3 10 1.992 
4 (-2, -1,0,1,2,0) 5.0 5 2.236 
5 (-5, -3, -1,1, 3,5) 12.7 35 2.147 

It is easily checked that MED = 2. 
Procedure SD2L. The unordered t-statistics are tested against t (05) = 1.645 in a step-down 

manner beginning with t5. It is easily checked that MED = 2. 
In this example, the Helmert contrasts fail to detect any dose as the MED. The reason for this 

is that the dose-response function is very nearly step-shaped with the true MED equal to about 
2. For this configuration, contrast 2 would be the most significant one (as can be checked from 
Table 2 because for higher order contrasts the higher dose means tend to cancel out with the lower 
dose means (which are nearly equal) producing a smaller (in magnitude) contrast. The standard 
deviations of the contrasts increase because of the increasing number of dose means involved in 
their calculation. The net effect is that the higher order contrasts become less and less significant. 
SD2H will have very little power in this case because it begins testing with the highest order 
contrast, which is likely to be the least significant, as is the case in this example where t5= .697 is 
the smallest t-statistic. SD1H has a better chance of identifying the MED (although it uses larger 
critical constants than SD2H does) because it begins by testing the most significant contrast. In 
the present example, the second contrast is the most significant one; however, t2 = 1.559 is not 
large enough to exceed the critical constant m ?5) 2.319. 5,oo 

Before concluding this example, we explain how the critical constants for SD1R and SD1L 
are computed because they involve unequally correlated multivariate t-distributions (normal 
distributions in the present case because df = oo). For illustration, consider SD1L. The correlation 
matrix of the five L contrasts is as follows: 

1 .5000 .3162 .2236 .1690- 
1 .6325 .4472 .3381 

1 .7071 .5345 
1 .7559 

The ci's are the upper .05 equicoordinate critical points of the multivariate t-distributions with 
correlation matrices that are appropriate submatrices (based on the observed ordering of the t- 
statistics) of the preceding matrix. For example, cl = 1.645 is the upper .05 critical point of 
the null distribution of tl. Next, c2 = 1.916 is the upper .05 equicoordinate critical point of 
the null distribution of (t(i), t(2)) =(ti, t3), which has the correlation coefficient P13 =.3162. 
Continuing, c3 2.060 is the upper .05 equicoordinate critical point of the null distribution 
of (t(l),t(2),t(3)) =(ti,t3,t2), which has the correlation coefficients P13 . 3162, P12 =.5000, 
P32 =.6325, and so on. Because the correlations were unequal, we used Schervish's (1984) algorithm 
to compute the ci 's exactly. 
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5. Simulation Results 
5.1 Design of the Simulation Study 
The 10 procedures described in Section 4 were compared in a large simulation study. Throughout 
the study, k, the number of positive dose levels was fixed at 5 and ae was fixed at .05. A common 
sample size, rn, was assumed per group. Without loss of generality, ,uo was fixed at 0 and the 
standard error of the means, a/I?, was fixed at 1. The df was assumed to be oo. 

The positive dose means were selected as follows: 

(a) Monotone Dose Response: In this case, we considered two types of response functions: (i) 
linear response and (ii) step response. Denote the value of the largest mean, /15, by 8. For each 
type of response function, two values of 8 were selected: 3 and 5. For each combination of the 
type of response function and the value of 6, the MED was varied over the five dose levels; for 
MED = 5, the linear and step response configurations coincide. This gives a total of 8 + 10 
= 18 monotone configurations of dose means. 

(b) Nonmonotone Dose Response: Nonmonotone mean configurations were selected as follows: 
Only linear response was considered with MED = 2 and 3, /4 = 8 and /15 = 8/2 and 0. For 
6 8 3 and 5, this gives eight nonmonotone configurations of dose means. 

Additional configurations were also studied, but here we report the results only for the preceding 
18 + 8 = 26 configurations. 

For each configuration (/o1, . . . /1k), the simulation run was carried out as follows: A vector 
of sample means (yo, Y1, . . , Yk) was generated where the Yi are independent N(/1i, 1) r.v.'s. Then, 
each procedure was applied to these same data. The critical constants used by the procedures are 
the same ones used in the example of Section 4. The MED identified by each procedure was noted. 
This was replicated 10,000 times for each of the 26 configurations. 

For each run, several summary statistics were computed for comparing the procedures. These 
statistics are as follows: 

(a) The proportions of replications (out of the total number, N = 10, 000) for which each dose level 
is identified as the MED by each procedure. These proportions give the operating characteristic 
of each procedure. (i) The proportion corresponding to noneffective doses gives an estimate 
of the FWE of the procedure. (ii) The proportion corresponding to the true MED gives an 
estimate of the power of the procedure. (iii) The proportion corresponding to dose levels higher 
than the true MED (including instances where none of the dose levels is declared as the MED) 
gives an estimate of the lack of power of the procedure. The first two proportions are given in 
Table 5 for monotone configurations and in Table 7 for nonmonotone configurations. 

(b) The estimated bias of MED, where the bias is defined as E(MED) - MED. This is another 
measure of the power of a procedure, the lower the bias the higher the power. In estimating 
E(MED), we adopted the convention of assigning MED = 6 if none of the five dose levels were 
identified as the MED. The estimated biases are given in Table 6 for monotone configurations 
and in Table 8 for nonmonotone configurations. 

(c) For each configuration and each pair of procedures, the number of replications (out of a total 
of 10,000) in which one procedure identifies a lower or higher or the same MED compared to 
the other procedure. For a given configuration and a pair of procedures (i, j), denote these 
numbers by Mij, Mji and 10, 000- (Mij + Mji), respectively. These numbers are summarized 
in Table 9 as follows. If Mij > Mji, then procedure i is said to beat procedure j for that 
configuration. Table 9 gives the number of configurations, Nij (out of a total of 26) that 
procedure i beats procedure j; note that Nij + Nji = 26. The last column of Table 9 gives the 
overall rank of each procedure based on the Nij values as follows: If Nij > 13, then procedure i 
beats procedure j for a majority of configurations. The procedure that beats most procedures 
for a majority of configurations was assigned rank 1, and so on. 

5.2 Discussion of Simulation Results 
We first discuss briefly the simulation results obtained for two step-down procedures that use step 
contrasts (denoted by SD1S and SD2S). Note that Ruberg (1989) used a single-step procedure 
based on the tinax statistic, which, as noted earlier, is not appropriate for identifying the MED; 
hence, we used step-down procedures SD1 and SD2. Our procedures differ from Ruberg's in another 
respect: whereas Ruberg used a conservative approximation to the exact critical point computed by 
replacing the correlation coeffcients Pij by a common correlation Pmin, we used the exact critical 
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constants for SD1S; the critical constant for SD2S is the Student's t percentage point, t( which 
does not depend on the correlations. The effect of both these deviations from Ruberg's procedure 
is to make SD1S and SD2S more anticonservative than he found in his simulations. 

The FWE of SD1S for monotone partial null configurations (MED > 1) ranged between .350 
and .994 with an average of .720, whereas the FWE of SD2S ranged between .191 and .970 with 
an average of .616 (recall that nominal a = .05). Thus, both these procedures have extremely high 
FWEs. As will be seen later, SD1 and SD2 procedures based on P, H, R, and L contrasts do control 
the FWE. So the cause of high FWEs is the step contrasts. For this reason, we do not include the 
simulation results for SD1S and SD2S in our tables. Although Ruberg's single-step procedure has 
a much lower FWE, it still does not control it. 

Next we compare the simulation results for the 10 procedures that do control the FWE. First, 
we consider monotone configurations. Table 5 gives the sample estimates of the FWE (upper entry) 
and the power (lower entry) for each procedure under each monotone configuration. Configurations 
with true MED = 1 involve no type I errors, so the upper entry of estimated FWE = .000 is omitted 
for all procedures. 

First, note that all 10 procedures control the FWE quite accurately at a = .05 under all partial 
null configurations. (The estimated FWE must exceed .05 + 1.96A.05 x .95/10,000 = .0543 in 
order to conclude that it is significantly different from [higher than] a = .05.) 

Table 5 
Estimated FWE (upper entry)a and power (lower entry) 

Procedure 
Response True 
function MED WILM SD1P SD2P SUIP SD1H SD2H SD1R SD2R SD1L SD2L 

Linear 1 .062 .070 .046 .071 .039 .001 .093 .086 .066 .045 
(6 = 3) 2 .024 .030 .018 .028 .016 .001 .040 .037 .027 .018 

.058 .050 .047 .048 .054 .011 .028 .044 .053 .071 
3 .034 .041 .025 .041 .028 .004 .048 .047 .040 .030 

.098 .061 .102 .062 .083 .070 .021 .043 .060 .121 
4 .039 .046 .033 .047 .041 .015 .048 .049 .044 .041 

.198 .108 .217 .107 .171 .292 .020 .043 .093 .206 
Linear 1 .134 .140 .116 .144 .097 .018 .160 .157 .138 .115 
(6 = 5) 2 .035 .036 .029 .038 .023 .006 .044 .044 .035 .029 

.148 .114 .149 .112 .137 .104 .058 .086 .121 .178 
3 .040 .044 .035 .044 .034 .016 .048 .051 .042 .041 

.239 .154 .259 .154 .223 .324 .042 .074 .145 .257 
4 .047 .049 .043 .048 .041 .038 .048 .049 .045 .048 

.461 .307 .504 .306 .476 .682 .047 .095 .251 .428 
Step 1 .538 .592 .342 .559 .475 .001 .653 .638 .580 .277 

(6 = 3) 2 .046 .045 .042 .044 .036 .002 .047 .047 .045 .043 
.503 .489 .357 .473 .574 .045 .229 .287 .519 .556 

3 .040 .043 .037 .040 .037 .011 .044 .044 .041 .041 
.508 .453 .410 .451 .615 .254 .105 .167 .437 .578 

4 .049 .047 .046 .047 .043 .027 .047 .050 .045 .049 
.529 .428 .488 .428 .633 .575 .065 .119 .356 .544 

5 .047 .053 .045 .052 .052 .043 .051 .052 .052 .053 
.604 .416 .683 .415 .632 .850 .040 .089 .300 .505 

Step 1 .960 .963 .892 .958 .927 .018 .970 .969 .962 .826 
(6 = 5) 2 .052 .052 .052 .052 .051 .019 .052 .052 .052 .052 

.903 .890 .858 .886 .928 .348 .537 .605 .896 .917 
3 .050 .049 .050 .048 .048 .040 .047 .048 .048 .050 

.906 .879 .876 .878 .938 .786 .282 .377 .854 .907 
4 .049 .046 .049 .046 .047 .047 .045 .047 .048 .051 

.908 .868 .899 .867 .942 .926 .164 .249 .793 .885 
5 .053 .049 .053 .049 .052 .053 .051 .050 .048 .052 

.909 .856 .971 .855 .935 .998 .100 .182 .729 .855 

Average power .481 .435 .327 .432 .493 .350 .201 .239 .409 .460 
Rank 2 4 8 5 1 7 10 9 6 3 

a For MED = 1, the upper entry equals .000 for all procedures, and is hence omitted. 
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Looking at the lower entries, which are the estimates of power, we see that no procedure is 
uniformly "best" or "worst" for all monotone configurations, but some general trends are apparent. 
SD1H, WILM, and SD2L have the highest average powers, and their performances are relatively 
stable for different values of MED, 6, and the type of response function. At the other end, SD1R, 
SD2R, SD2P, and SD2H have the lowest average powers. There are some switches between these two 
groups of procedures for different configurations. For example, SD1R and SD2R have the highest 
powers for MED = 1, but their powers drop off rapidly reaching nadir for MED = 3, 4, or 5. On 
the other hand, SD2H has the lowest power when MED = 1 or 2 (with SD1H having the second 
lowest power when MED = 1 for linear response) but has one of the highest powers when MED 
= 4 or 5. Thus, R contrasts are good for detecting low MEDs, whereas H contrasts are good for 
detecting high MEDs. Why this is so can be easily seen from the nature of the contrasts in each 
case. This also agrees with the results of the example in Section 4, where the MED was low and 
H contrasts lacked power to identify it. SD2L is more powerful than SD1L in all cases when MED 
> 1. (This is also true of SD1R and SD2R.) 

Finally, note that SD1P and SUIP have very similar powers that are always in the medium 
range. Also, the type of response function (linear vs. step) does not seem to make much difference 
in terms of the relative performances of these two procedures. 

These power results are corroborated by the bias estimates for the same monotone configurations 
given in Table 6. In terms of the lowest average bias, the ranking is SD2L, WILM, and SD1L followed 
by SD1H, while SD2H, SD1R, and SD2R have the highest biases. 

Next, we turn to the simulation results for nonmonotone configurations. From the upper entries 
in Table 7, we see that the FWE is controlled by all procedures for the eight configurations studied. 
This result is somewhat surprising for WILM, because it makes explicit use of the monotonicity 
assumption. Once again, SD1H, SD2L, and WILM have the highest average powers, whereas SD2H, 
SD1R, SD2P, and SD2R have the lowest average powers. For all except one configuration, SD2H 
has the lowest power bordering close to zero. Because of the dip in the response function at the 
highest dose level, all SD2 procedures have very low powers, the only exception being SD2L, which 
maintains surprisingly high power (relative to other SD2 procedures). 

Turning to Table 8, we see that in terms of the estimated bias the ranking is SD1L, SD1H, 
SD1P, SUiP, SD2L, WILM, SD2R, SD1R, SD2P, and SD2H. The last four procedures have much 
higher biases than the others. Here, SD2L and WILM are ranked lower compared to the monotone 
configurations case (Table 6). 

Finally, we come to Table 9, which gives an overall summary of the performances of the eight 
procedures for all 26 configurations, as explained earlier. We see that SD1H, SD2L, and SD1L rank 
highest in the overall ranking, followed by WILM, SD1P, SUIP, and SD2P, whereas SD2R, SD1R, 
and SD2H rank lowest. This ranking generally agrees with the rankings based on other criteria 
considered earlier. 

6. Concluding Remarks 
The present study has been limited to the equal sample size case, and its conclusions need to be 
extended to the unequal sample size case. Unequal sample sizes make the correlations Pij unequal 
for P and H contrasts; in particular, the H contrasts are no longer uncorrelated. 

There is no difficulty extending the SD2 procedures since the Student's t percentage point used 
by these procedures does not depend on the correlation structure. The critical constants required 
by the SD1 and SUI procedures can also be calculated either exactly using Schervish's (1984) 
algorithm or approximately using the average correlation method given in Dunnett and Tamhane 
(1991, 1995). For WILM, the isotonic estimates ,ui must be computed by a different formula given in 
Williams (1972); however, it is difficult to compute the exact critical constants for WILM because 
of the complicated nature of the joint distribution of the ti statistics. Williams (1972) suggested 
that if the imbalance is moderate, in particular, if .80 < ni/nk < 1.25 for all i = 1,... , k - 1, then 
the tabulated constants for equal replication on nonzero dose levels are quite accurate. 

Here is a summary of the findings and the contributions of the present study: 

(a) We provided a framework for constructing stepwise testing procedures based on general 
contrasts to identify the MED. 

(b) Using this framework, we proposed several new procedures. 
(c) We pointed out a drawback of step and basin contrast procedures proposed by Ruberg (1989) 

in their inability to control the FWE. Any other contrast that puts nonzero weights on dose 
levels higher than the one under test for the MED shares the same drawback. 
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Table 6 
Estimated bias for different procedures under selected monotone configurations 

Procedure 
Response True 
function MED WILM SD1P SD2P SUIP SD1H SD2H SD1R SD2R SD1L SD2L 

Linear 1 3.297 3.539 3.479 3.530 3.867 4.248 3.879 3.593 3.378 3.093 
( =3) 2 2.567 2.836 2.661 2.842 2.832 3.029 3.328 3.086 2.568 2.182 

3 1.786 2.057 1.807 2.057 1.918 1.892 2.528 2.371 1.859 1.503 
4 1.041 1.262 1.021 1.264 1.058 .887 1.681 1.595 1.217 .939 

Linear 1 1.974 2.201 2.065 2.193 2.555 3.039 2.705 2.396 2.067 1.864 
(6= 5) 2 1.462 1.745 1.486 1.746 1.658 1.754 2.615 2.293 1.493 1.212 

3 .955 1.200 .933 1.199 .987 .855 2.148 1.907 1.068 .818 
4 .447 .623 .420 .626 .417 .247 1.501 1.353 .652 .471 

Step 1 1.648 1.436 2.613 1.467 2.321 4.834 1.162 1.098 1.519 2.960 
(6 3) 2 1.264 1.287 1.870 1.304 1.155 3.499 2.073 1.722 .882 .863 

3 .970 1.102 1.295 1.110 .708 1.914 2.128 1.850 .797 .527 
4 .615 .797 .723 .798 .426 .664 1.572 1.431 .750 .448 
5 .256 .380 .249 .385 .180 .080 .739 .714 .500 .360 

Step 1 .089 .078 .357 .083 .291 4.635 .055 .050 .087 .692 
(6= 5) 2 .035 .054 .201 .057 -.016 2.272 .643 .468 .005 -.014 
Step 3 .002 .039 .096 .040 -.052 .437 1.191 .919 .025 -.019 

4 -.025 .016 .014 .016 -.078 .002 1.225 1.024 .063 -.007 
5 -.061 -.041 -.046 -.038 -.114 -.054 .674 .626 .088 .008 

Average bias 1.018 1.145 1.180 1.149 1.117 1.902 1.769 1.583 1.057 0.994 
Rank 2 5 7 6 4 10 9 8 3 1 

Table 7 
Estimated FWE (upper entry) and power (lower 
entry) under selected nonmonotone configurations 

Procedure 
True ________________________________ 
MED /14 = 6 /5 WILM SD1P SD2P SUIP SD1H SD2H SD1R SD2R SD1L SD2L 

2 3.0 1.5 .031 .032 .019 .031 .018 .000 .042 .040 .031 .021 
.088 .075 .056 .067 .085 .006 .041 .062 .081 .105 

2 3.0 .0 .029 .034 .009 .025 .019 .000 .043 .041 .033 .015 
.078 .075 .016 .064 .080 .000 .043 .064 .083 .070 

2 5.0 2.5 .041 .040 .036 .041 .029 .001 .047 .047 .040 .039 
.242 .185 .197 .170 .234 .034 .081 .119 .190 .268 

2 5.0 .0 .041 .042 .012 .030 .031 .000 .049 .048 .041 .032 
.230 .191 .026 .164 .238 .000 .082 .117 .196 .213 

3 3.0 1.5 .042 .043 .028 .038 .031 .002 .047 .049 .049 .039 
.158 .118 .102 .110 .162 .036 .034 .064 .112 .192 

3 3.0 .0 .036 .039 .011 .032 .032 .000 .046 .046 .038 .030 
.118 .123 .027 .112 .169 .003 .035 .064 .119 .134 

3 5.0 2.5 .050 .048 .045 .047 .044 .009 .048 .051 .042 .050 
.446 .336 .340 .318 .482 .149 .080 .124 .311 .459 

3 5.0 .0 .046 .047 .013 .036 .041 .000 .049 .048 .047 .043 
.373 .346 .030 .321 .488 .001 .078 .133 .314 .384 

Average power .217 .181 .099 .166 .242 .029 .059 .093 .176 .228 
Rank 3 4 7 6 1 10 9 8 5 2 

(d) We conducted an extensive simulation study for both monotone and nonmonotone 
configurations to compare the various procedures. The following general conclusions and 
recommendations can be made based on this simulation study for the case of equal sample 
sizes: 
i. In terms of power, SD1H, WJLM, and SD2L are the best procedures when the dose-response 

function is monotone. The same procedures are best for non-monotone configurations also. 
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Table 8 
Estimated bias for different procedures under selected non-monotone configurations 

True Procedure 

MED /14 = 6 /5 WILM SD1P SD2P SUIP SD1H SD2H SD1R SD2R SD1L SD2L 

2 3.0 1.5 2.627 2.541 3.207 2.563 2.503 3.818 3.151 2.909 2.199 2.165 
2 3.0 .0 3.074 2.543 3.823 2.594 2.527 3.992 3.150 3.052 2.230 2.987 
2 5.0 2.5 1.214 1.255 2.170 1.293 1.140 3.642 2.232 1.925 1.054 .904 
2 5.0 .0 1.834 1.236 3.799 1.324 1.123 4.000 2.269 2.226 1.052 1.855 
3 3.0 1.5 1.838 1.778 2.299 1.797 1.573 2.712 2.444 2.256 1.562 1.392 
3 3.0 .0 2.300 1.817 2.837 1.846 1.553 2.983 2.483 2.408 1.652 2.101 
3 5.0 2.5 .718 .717 1.470 .738 .471 2.379 1.933 1.670 .633 .486 
3 5.0 .0 1.388 .716 2.848 .772 .474 2.997 1.994 1.949 .652 1.167 

Average bias 1.874 1.575 2.807 1.616 1.421 3.315 2.457 2.299 1.379 1.632 
Rank 6 3 9 4 2 10 8 7 1 5 

Table 9 
The number of configurations, Nij, for which procedure 

i estimates a lower MED compared to procedure j 

Procedure j 

Procedure i WILM SD1P SD2P SUIP SD1H SD2H SD1R SD2R SD1L SD2L Rank 

WILM 17 22 18 9 22 24 23 13 7 4 
SD1P 9 14 21 4 18 24 24 6 7 5 
SD2P 4 12 12 7 19 19 16 10 5 7 
SUIP 8 5 14 4 18 24 24 6 7 6 
SD1H 17 22 19 22 21 24 22 13 14 1 
SD2H 4 8 7 8 5 12 11 7 4 10 
SD1R 2 2 7 2 2 14 0 2 2 9 
SD2R 3 2 10 2 4 15 26 2 2 8 
SD1L 13 20 16 20 13 19 24 24 6 3 
SD2L 19 19 21 19 12 22 24 24 20 2 

Their performances are not affected much by the true shape of the dose-response function, 
as is the case with SD2H, SD1R, and SD2R. 

ii. In terms of bias, SD2L, WILM, and SD1L are the best procedures when the dose-response 
function is monotone. SD1L, SD1H, and SD1P are best for nonmonotone configurations. 

iii. On an overall basis, the best four procedures are SD1H, SD2L, SD1L, and WILM. 
iv. Step-down procedures are preferred over step-up procedures. However, SD1 procedures 

should be used in their modified form where implied hypotheses are rejected at each step 
and the critical constant is accordingly reduced to take account of the reduced number of 
hypotheses. In this form, SD1 procedures perform slightly better than SUl procedures. 

v. Helmert contrasts should not be used with SD2, unless the MED is expected to be high. 
Reverse Helmert contrasts are generally not recommended, unless the MED is expected to 
be low. The best performing contrasts with both SD1 and SD2 are linear. 

vi. SD2 procedures should not be used if the dose-response function can be highly nonmonotone, 
a definite possibility in vaccine studies. 

vii. SD2P ranks rather low in terms of both power and bias. However, a great advantage of 
SD2P is that it can be easily extended to more complex unbalanced designs and can be 
used even when the normal theory assumptions are not satisfied (when the t-tests must 
be replaced by appropriate nonparametric tests). Under these conditions, SD2P is the only 
available option. 

Finally, we note that this study has been restricted to procedures based on contrasts among the 
dose level means. It is possible to use SD2 procedures by testing each Hoi using a test of homogeneity 
such as Bartholomew's (1959a,b) test or Hayter's (1990) test against an ordered alternative. This 
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suggestion was made by Chase (1974) in the context of Bartholomew's test. We are currently 
investigating these procedures and plan to report our findings in a follow-up article. 
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RESUME 

Nous considerons la situation oiu l'on cherche 'a identifier la plus faible dose pour laquelle la reponse 
differe de celle de la dose zero. Nous proposons un cadre general pour des procedures de tests 
pas a pas utilisant des contrastes sur les moyennes des differentes doses, a partir duquel plusieurs 
procedures nouvelles sont obtenues. Ces nouvelles procedures et d'autres plus anciennes, incluant 
celle de Williams (1971, Biometrics 27, 103-117; 1972, Biometrics 28, 519-531), sont comparees de 
maniere analytique, ainsi que par une simulation detaillee, dans le cas du modele 'a un facteur avec 
effectifs equilibres et distribution normale. On montre que les procedures basees sur les contrastes 
dits 'step contrasts' et 'basin contrasts', proposees par Ruberg (1989, Journal of the American 
Statistical Association 84, 816-822), ont des erreurs globales de type I (familywise error rate) 
exagerement elevees et qu'en consequence elles ne doivent pas etre utilisees. Les principaux resultats 
de la simulation sont les suivants. Dans le cas d'une configuration des moyennes monotone selon les 
doses, la procedure de Williams et deux procedures de test descendantes basees sur des contrastes 
de Helmert et des contrastes lineaires sont les plus performantes. Dans le cas de configurations non 
monotones, les performances de la procedure de Williams se degradent quelque peu, tandis que 
les deux autres procedures sont encore les meilleures. Pour des plans plus complexes, une simple 
procedure descendante pas a pas, utilisant n'importe quel test de niveau alpha (pas necessairement 
le test de Student) pour comparer chaque dose a la dose zero, permet de contr6ler le risque d'erreur 
global: cette procedure est la seule solution disponible, mais sa puissance est plut6t faible, en 
particulier dans le cas de configurations non monotones. Sur une famille donnee de contrastes, 
les procedures ascendantes se comportent generalement moins bien mais pas beaucoup moins 
bien-que les procedures descendantes. 
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